Respuesta :
Answer:
[tex]\frac{1}{5}[/tex] , [tex]\frac{1}{3}[/tex] , [tex]\frac{4}{6}[/tex].
Step-by-step explanation:
Given fractions [tex]\frac{1}{3}[/tex], [tex]\frac{4}{6}[/tex], [tex]\frac{1}{5}[/tex].
We need to list them from least to greatest.
In order to arrange them from least to greatest, we need to find the least common denominator of [tex]\frac{1}{3}[/tex], [tex]\frac{4}{6}[/tex], [tex]\frac{1}{5}[/tex].
We have 3, 6 and 5 in denominators.
Least common multiple of 3, 6 and 5 is = 30, because 30 is least number that can be divided by all three number 3, 6 and 5.
Let us covert each denominator as 30.
Multiplying first fraction [tex]\frac{1}{3}[/tex] by 10 in top and bottom, we get
[tex]\frac{1}{3} = \frac{1\times10}{3\times10}=\frac{10}{30}[/tex]
Multiplying first fraction [tex]\frac{4}{6}[/tex] by 5 in top and bottom, we get
[tex]\frac{4}{6} = \frac{4\times5}{6\times5}=\frac{20}{30}[/tex]
Multiplying first fraction [tex]\frac{1}{5}[/tex] by 6 in top and bottom, we get
[tex]\frac{1}{5} = \frac{1\times6}{5\times6}=\frac{6}{30}.[/tex]
Now, we can check [tex]\frac{10}{30}, \frac{20}{30} \ and \ \frac{6}{30}.[/tex]
[tex]\frac{6}{30}[/tex] is the smallest, [tex]\frac{10}{30}[/tex] is greater and [tex]\frac{20}{30}[/tex] is the greatest.
Therefore, we can arrange fractions[tex]\frac{6}{30}, \frac{10}{30} \ and \ \frac{20}{30}.[/tex]
Writing original fractions in place of equivalent fractions, we can write
[tex]\frac{1}{5}[/tex] , [tex]\frac{1}{3}[/tex] and [tex]\frac{4}{6}[/tex].
Therefore, the order the amounts of paint from least to greatest is:
[tex]\frac{1}{5}[/tex] , [tex]\frac{1}{3}[/tex] , [tex]\frac{4}{6}[/tex].