Respuesta :

Answer:

[tex]\frac{1}{5}[/tex] ,  [tex]\frac{1}{3}[/tex] , [tex]\frac{4}{6}[/tex].

Step-by-step explanation:

Given fractions [tex]\frac{1}{3}[/tex], [tex]\frac{4}{6}[/tex], [tex]\frac{1}{5}[/tex].

We need to list them from least to greatest.

In order to arrange them from least to greatest, we need to find the least common denominator of  [tex]\frac{1}{3}[/tex], [tex]\frac{4}{6}[/tex], [tex]\frac{1}{5}[/tex].

We have 3, 6 and 5 in denominators.

Least common multiple of 3, 6 and 5 is = 30, because 30 is least number that can be divided by all three number 3, 6 and 5.

Let us covert each denominator as 30.

Multiplying first fraction [tex]\frac{1}{3}[/tex] by 10 in top and bottom, we get

[tex]\frac{1}{3} = \frac{1\times10}{3\times10}=\frac{10}{30}[/tex]

Multiplying first fraction [tex]\frac{4}{6}[/tex] by 5 in top and bottom, we get

[tex]\frac{4}{6} = \frac{4\times5}{6\times5}=\frac{20}{30}[/tex]

Multiplying first fraction  [tex]\frac{1}{5}[/tex] by 6 in top and bottom, we get

[tex]\frac{1}{5} = \frac{1\times6}{5\times6}=\frac{6}{30}.[/tex]

Now, we can check [tex]\frac{10}{30}, \frac{20}{30} \ and \ \frac{6}{30}.[/tex]

[tex]\frac{6}{30}[/tex] is the smallest, [tex]\frac{10}{30}[/tex] is greater and [tex]\frac{20}{30}[/tex] is the greatest.

Therefore, we can arrange fractions[tex]\frac{6}{30}, \frac{10}{30} \ and \ \frac{20}{30}.[/tex]

Writing original fractions in place of equivalent fractions, we can write

[tex]\frac{1}{5}[/tex] ,  [tex]\frac{1}{3}[/tex] and  [tex]\frac{4}{6}[/tex].

Therefore, the order the amounts of paint from least to greatest is:

[tex]\frac{1}{5}[/tex] ,  [tex]\frac{1}{3}[/tex] , [tex]\frac{4}{6}[/tex].




Otras preguntas