Respuesta :

ANSWER

C. 2π

EXPLANATION

The given function is

[tex]y = 1 + \tan( \frac{1}{2}x ) [/tex]

The period of the tangent function is given by

[tex]T = \frac{\pi}{ B } [/tex]

where B is the coefficient of the argument of the tangent function.

This implies that,

[tex]B = \frac{1}{2} [/tex]

Hence, the period of the given function is,

[tex]T = \frac{\pi}{ \frac{1}{2} } [/tex]

This simplifies to,

[tex]T = 2\pi[/tex]

The correct answer is option C.

Answer:

C. [tex]2\pi[/tex]

Step-by-step explanation:

We have been given a trigonometric function [tex]y=1+\text{tan}(\frac{1}{2}x)[/tex]. We are asked to find period of our given function.

We know that period of a tangent function is form [tex]f(x)=a\cdot \text{tan}(bx)+c[/tex], is [tex]\text{Period}=\frac{\pi}{|b|}[/tex].

We can rewrite our given function as:

[tex]y=\text{tan}(\frac{1}{2}x)+1[/tex]

We can see that value of b is [tex]\frac{1}{2}[/tex] for our given function.

[tex]\text{Period}=\frac{\pi}{\frac{1}{2}}[/tex]

Using fraction rule [tex]\frac{a}{\frac{b}{c}}=\frac{ac}{b}[/tex], we will get:

[tex]\text{Period}=\frac{2\pi}{1}[/tex]

[tex]\text{Period}=2\pi[/tex]

Therefore, period of our given function is [tex]2\pi[/tex] and option C is the correct choice.