Respuesta :

ANSWER

[tex]y = \frac{1}{25} [/tex]

EXPLANATION

If y varies inversely as x, we can write the relation,

[tex]y \propto \frac{1}{x} [/tex]

When we introduce the constant of proportionality, we get the equation.


[tex]y = \frac{k}{x} [/tex]


When
[tex]y = \frac{2}{5} [/tex]
and

[tex]x = \frac{1}{20} [/tex]


We get,


[tex] \frac{2}{5} = \frac{k}{ \frac{1}{20} } [/tex]
We solve for k, by multiplying both sides of the equation by
[tex] \frac{1}{20} [/tex]


This implies that,


[tex] \frac{2}{5} \times \frac{1}{20} = k [/tex]

This simplifies to give


[tex]k = \frac{1}{50} [/tex]



The variation equation now becomes,


[tex]y = \frac{ \frac{1}{50} }{x} [/tex]


or


[tex]y = \frac{1}{50x} [/tex]


When
[tex]x = \frac{1}{2} [/tex]

[tex]y = \frac{1}{50 \times \frac{1}{2} } [/tex]


This gives us,


[tex]y = \frac{1}{25} [/tex]


The correct answer is B.