Respuesta :

gmany

The slope-intercept form:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points (2, 6) and (-4, -6). Substitute:

[tex]m=\dfrac{-6-6}{-4-2}=\dfrac{-12}{-6}=2[/tex]

Therefore we have the equation

[tex]y=2x+b[/tex]

Put the coordinates of the point (2, 6) to the equation:

[tex]6=2(2)+b[/tex]

[tex]6=4+b[/tex]        subtract 4 from both sides

[tex]2=b\to b=2[/tex]

Answer: [tex]\boxed{y=2x+2}[/tex]

Answer:

y = 2x+2

Step-by-step explanation:

We have two points so we can find the slope

m = (y2-y1)/(x2-x1)

   = (6--6)/ (2--4)

   = (6+6)/(2+4)

  =12/6

  =2

We can use point slope form to make an equation of a line

y-y1 = m(x-x1)

y--6 = 2(x--4)

y+6 =2(x+4)

Distribute

y+6 = 2x+8

Subtract 6 from each side

y+6-6 = 2x+8-6

y = 2x+2

This is in slope intercept form

y= mx+b