Find an equation of the line L that passes through the point (−6, 8) and satisfies the given condition. (Let x be the independent variable and y be the dependent variable.) The x-intercept of L is 3

Respuesta :

Answer:

[tex]y=-\frac{8}{9}x+\frac{8}{3}[/tex]

Or


[tex]9y+8x-24=0[/tex]


Step-by-step explanation:

The line passes through [tex](-6,8)[/tex]

The x-intercept being 3 means the line also passes through [tex](3,0)[/tex].


We can use the formula,

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

The slope of the given line is [tex]m=\frac{0-8}{3--6}[/tex]


This simplifies to

[tex]m=-\frac{8}{9}[/tex].


[tex]y-0=-\frac{8}{9}(x-3)[/tex]


This gives

[tex]y=-\frac{8}{9}x+\frac{8}{3}[/tex]

This is the slope-intercept form.


When we multiply through by 9, we get,

[tex]9y=-8x+24[/tex]


Or

[tex]9y+8x-24=0[/tex]