Respuesta :
Answer: [tex]\bold{24x^3\sqrt{5x}-4x^3\sqrt{10x}}[/tex]
Step-by-step explanation:
[tex]2\sqrt{8x^3}\ (3\sqrt{10x^4}-x\sqrt{5x^2})\\\\2\sqrt{8x^3}\cdot 3\sqrt{10x^4}\ -\ 2\sqrt{8x^3}\cdot x\sqrt{5x^2}\quad \rightarrow \quad \text{applied distributive property}\\\\2\cdot 3\sqrt{8x^3\cdot10x^4}\ -\ 2\cdot x\sqrt{8x^3\cdot5x^2}\quad \rightarrow \quad \text{multiplied "outsides" and "insides"}[/tex]
Evaluate each one separately:
[tex]6\sqrt{\underline{2\cdot2}\cdot\underline{2\cdot2}\cdot5\cdot \underline{xx}\cdot \underline{xx}\cdot \underline{xx}\cdot x} = 6\cdot 2\cdot2\cdot x\cdot x\cdot x\sqrt{5x}=\boxed{24x^3\sqrt{5x}}\\\\2x\sqrt{\underline{2\cdot2}\cdot2\cdot5\cdot \underline{xx}\cdot \underline{xx}\cdot x}=2x\cdot 2\cdot x\cdot x\sqrt{2\cdot5\cdot x}=\boxed{4x^3\sqrt{10x}}[/tex]
The terms cannot be combined because they have different radicals (insides).
[tex]\boxed{24x^3\sqrt{5x}}-\boxed{4x^3\sqrt{10x}}[/tex]