Could someone do all the problems and/or check my work?

NOTES: To find the intercepts/roots:
11. Answer: x = {-4, 0, 5}
Step-by-step explanation:
[tex]x^3=x^2+20x\\x^3-x^2-20x=0\\x(x^2-x-20)=0\\x(x-5)(x+4)=0\\x=0\quad x-5=0\quad x+4=0\\x=0\quad x=5\quad x=-4\\Solutions:\ x=\{-4, 0, 5\}[/tex]
***********************************************************************************
12. Answer: x = No real solution
Step-by-step explanation:
[tex]x^4+13x^2+40=0\\(x^2+5)(x^2+8)=0\\x^2+5=0\quad \qquad x^2+8=0\\x^2=-5\qquad \qquad x^2=-8\\x=\pm \sqrt{-5}\quad \quad x=\pm \sqrt{-8}\\ \text{Neither solution is a real number}[/tex]
***********************************************************************************
13. Answer: x = {-2, 2}
Step-by-step explanation:
[tex]x^4-x^2=x^2+8\\x^4-2x^2-8=0\\(x^2-4)(x^2+2)=0\\x^2-4=0\quad \qquad x^2+2=0\\x^2=4\qquad \qquad x^2=-2\\x=\pm \sqrt{4}\quad \quad x=\pm \sqrt{-2}\\x=\pm 2\qquad \text{x is not a real solution}\\Solutions: x = \{-2, 2\}[/tex]
***********************************************************************************
14. Answer: [tex]\bold{x=\bigg\{-1, 1, -\dfrac{\sqrt{15}}{3}, \dfrac{\sqrt{15}}{3}\bigg\}}[/tex]
Step-by-step explanation:
[tex]3x^4-8x^2+5=0\\3x^4-3x^2-5x^2+5=0\\3x^2(x^2-1)-5(x^2-1)=0\\(3x^2-5)(x^2-1)=0\\3x^2-5=0\qquad x^2-1=0\\x^2=\dfrac{5}{3}\qquad \qquad x^2=1\\\\x=\pm \sqrt{\dfrac{5}{3}}\quad \quad x=\pm \sqrt{1}\\\\x=\pm \dfrac{\sqrt{15}}{3}\qquad x=\pm1\\\\Solutions: x = \bigg\{-1, 1, -\dfrac{\sqrt{15}}{3}, \dfrac{\sqrt{15}}{3}}\bigg\}[/tex]
***********************************************************************************
15. Answer: [tex]\bold{x=\bigg\{-2, 2, -\dfrac{5}{4}\bigg\}}[/tex]
Step-by-step explanation:
[tex]4x^3+5x^2-16x-20=0\\3x^4-3x^2-5x^2+5=0\\x^2(4x+5)-4(4x+5)=0\\(x^2-4)(4x+5)=0\\x^2-4=0\qquad 4x+5=0\\x^2=4\qquad \qquad 4x=-5\\\\x=\pm \sqrt{4}\quad \quad x=\dfrac{-5}{4}\\\\x=\pm 2\qquad \quad x=-\dfrac{5}{4}\\\\ Solutions: x = \bigg\{-2, 2, -\dfrac{5}{4}}\bigg\}[/tex]