Respuesta :

Answer:

see explanation

Step-by-step explanation:

using the trigonometric identities

• sin²x + cos²x = 1

• tan²x + 1 = sec²x

• cotx = [tex]\frac{1}{tanx}[/tex] and secx = [tex]\frac{1}{cosx}[/tex]

(61)

subtracting the 2 fractions

= [tex]\frac{tan^2x-sec^2x}{tanx}[/tex]

= [tex]\frac{sec^2x-1-sec^2x}{tanx}[/tex]

= [tex]\frac{-1}{tanx}[/tex]

= - cotx

(63)

adding the 2 fractions

= [tex]\frac{cos^2x+(1+sinx)^2}{cosx(1+sinx)}[/tex]

= [tex]\frac{cos^2x+1+2sinx+sin^2x}{cosx(1+sinx)}[/tex]

= [tex]\frac{2(1+sinx)}{cosx(1+sinx)}[/tex]

= [tex]\frac{2}{cosx}[/tex] = 2secx