Match each trinomial to its factored form. (y - 2)(3y + 4) 3y2 + 2y - 8 (y + 2)(3y - 4) 3y2 + 13y - 10 (3y + 2)(y - 5) 3y2 - 13y - 10 (3y - 2)(y + 5) 3y2 - 2y - 8 arrowBoth arrowBoth arrowBoth arrowBoth

Respuesta :

Answer:

Match each trinomial to its factored form:

1.  [tex](y-2)(3y+4)[/tex]

Multiplying each term in the first expression by each term in  a second expression.

[tex]y(3y+4) -2(3y+4)[/tex]

Using distributive property: [tex]a\cdot (b+c) = a\cdot b+ a\cdot c[/tex]

[tex](3y^2 + 4y) -(6y + 8)[/tex]

Remove the parenthesis, we have;

[tex]3y^2 + 4y -6y -8[/tex]

combine like term ;

[tex]3y^2-2y -8[/tex]

2. [tex](y+2)(3y-4)[/tex]

Multiplying each term in the first expression by each term in  a second expression.

[tex]y(3y-4) +2(3y-4)[/tex]

Using distributive property: [tex]a\cdot (b+c) = a\cdot b+ a\cdot c[/tex]

[tex](3y^2 - 4y) + (6y - 8)[/tex]

Remove the parenthesis, we have;

[tex]3y^2 - 4y + 6y - 8[/tex]

combine like term ;

[tex]3y^2 + 2y -8[/tex]

3.  [tex](3y+2)(y-5)[/tex]

Multiplying each term in the first expression by each term in  a second expression.

[tex]3y(y-5) +2(y-5)[/tex]

Using distributive property: [tex]a\cdot (b+c) = a\cdot b+ a\cdot c[/tex]

[tex](3y^2 - 15y) + (2y - 10)[/tex]

Remove the parenthesis, we have;

[tex]3y^2 - 15y + 2y - 10[/tex]

combine like term ;

[tex]3y^2 -13y -10[/tex]

4.  [tex](3y-2)(y+5)[/tex]

Multiplying each term in the first expression by each term in  a second expression.

[tex]3y(y+5) -2(y+5)[/tex]

Using distributive property: [tex]a\cdot (b+c) = a\cdot b+ a\cdot c[/tex]

[tex](3y^2 + 15y) - (2y + 10)[/tex]

Remove the parenthesis, we have;

[tex]3y^2+ 15y - 2y - 10[/tex]

combine like term ;

[tex]3y^2 + 13y -10[/tex]

Column 1                                    Column 2

[tex](y-2)(3y+4)[/tex]                   [tex]3y^2-2y -8[/tex]

[tex](y+2)(3y-4)[/tex]                   [tex]3y^2+ 2y -8[/tex]

[tex](3y+2)(y-5)[/tex]                   [tex]3y^2 -13y -10[/tex]

[tex](3y-2)(y+5)[/tex]                  [tex]3y^2 + 13y -10[/tex]

Answer:

[tex]3y^2 + 2y - 8=(3y-4)(y+2)[/tex]

[tex]3y^2 + 13y - 10=(3y-2)(y+5)[/tex]

[tex]3y^2 - 13y - 10=(3y+2)(y-5)[/tex]

[tex]3y^2 - 2y - 8=(3y+4)(y-2)[/tex]

Step-by-step explanation:

Given trinomial are

[tex]3y^2 + 2y - 8\\3y^2 + 13y - 10\\3y^2 - 13y - 10\\3y^2 - 2y - 8[/tex].

we have to convert these in factored form

[tex]3y^2 + 2y - 8=3y^2+6y-4y-8[/tex]

                           = [tex]3y(y+2)-4(y+2)[/tex]

                           = [tex](3y-4)(y+2)[/tex]

[tex]3y^2 + 13y - 10=3y^2+15y-2y-10[/tex]

                           = [tex]3y(y+5)-2(y+5)[/tex]

                           = [tex](3y-2)(y+5)[/tex]

[tex]3y^2 - 13y - 10=3y^2-15y+2y-10[/tex]

                           = [tex]3y(y-5)+2(y-5)[/tex]

                           = [tex](3y+2)(y-5)[/tex]

[tex]3y^2 - 2y - 8=3y^2-6y+4y-8[/tex]

                           = [tex]3y(y-2)+4(y-2)[/tex]

                           = [tex](3y+4)(y-2)[/tex]