Respuesta :

Answer:

[tex]16\sqrt{x}[/tex]

Step-by-step explanation:

Compare the graphs in the attached picture. The red graph is [tex]\sqrt{16x}[/tex]. The blue graph is [tex]16\sqrt{x}[/tex]. The blue rises much steeper.

Ver imagen MrsStrong

Answer:

g(x) rises more steeply than f(x)

Step-by-step explanation:

Given: [tex]f(x)=\sqrt{16x}[/tex]

[tex]g(x)=16\sqrt{x}[/tex]

The parent function of both f(x) and g(x) is same.

[tex]\text{Parent function }:p(x)=\sqrt{x}[/tex]

[tex]f(x)=\sqrt{16x}=4\sqrt{x}[/tex]

[tex]g(x)=16\sqrt{x}[/tex]

[tex]y=a\cdot f(x)[/tex]

The rise of function depends on the value of a.

Higher the value of a rises more  because coefficient is more.

[tex]p(x)=\sqrt{x}[/tex]

[tex]f(x)=4\sqrt{x}[/tex]

[tex]g(x)=16\sqrt{x}[/tex]

The coefficient of g(x) is more than f(x).

We can see graphically also. Please see attachment for graph.

Hence, g(x) rises more  steeply than f(x).

Ver imagen isyllus