contestada

PLEASE HELP!!!

Rhombus ADEF is inscribed into a triangle ABC so that they share angle A and the vertex E lies on the side
BC
. What is the length of the side of the rhombus if AB=c, and AC=b.

Respuesta :

Answer:

Step-by-step explanation:

Given that Rhombus ADEF is inscribed into a triangle ABC so that they share angle A and the vertex E lies on the side BC.Then,

AE is the angle bisector of ∠A, so divides the sides of the triangle into a proportion:

[tex]\frac{BE}{CE}=\frac{BA}{AC}=\frac{c}{b}[/tex]

⇒[tex]\frac{BE}{CE}=\frac{c}{b}[/tex]

⇒[tex]\frac{BE}{BC}=\frac{c}{c+b}[/tex]

Also, ΔDBE is similar to ΔABC, then

[tex]DE=(\frac{BE}{BC})AC[/tex]

=[tex](\frac{c}{c+b})b[/tex]

Therefore, the length of the rhombus is =[tex](\frac{c}{c+b})b[/tex]

 

Ver imagen boffeemadrid