Respuesta :

gmany

Answer:

[tex]\large\dfrac{36^x}{6^x}=\left(\dfrac{36}{6}\right)^x=\dfrac{6^{2x}}{6^x}=6^x[/tex]

Step-by-step explanation:

[tex]\dfrac{36^x}{6^x}\qquad\text{use}\ \left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}\\\\=\left(\dfrac{36}{6}\right)^x=6^x\\\\36=6\cdot6=6^2\\\\\dfrac{36^x}{6^x}=\dfrac{(6^2)^x}{6^x}\qquad\text{use}\ (a^n)^m=a^{nm}\\\\=\dfrac{6^{2x}}{6^x}\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\=6^{2x-x}=6^x}[/tex]