Find the value of x.

Answer:
[tex]\large\boxed{x=10}[/tex]
Step-by-step explanation:
Look at the picture.
ΔABC and ΔDBE are similar. Therefore the sides are in ptoportion:
[tex]\dfrac{AB}{DB}=\dfrac{AC}{DE}[/tex]
We have
[tex]AB=2y\\DB=y\\AC=3x\\DE=x+5[/tex]
Substitute:
[tex]\dfrac{2y}{y}=\dfrac{3x}{x+5}[/tex]
[tex]\dfrac{2}{1}=\dfrac{3x}{x+5}[/tex] cross multiply
[tex](2)(x+5)=(3x)(1)[/tex] use distributive property
[tex]2x+10=3x[/tex] subtract 2x from both sides
[tex]10=x\to x=10[/tex]