Respuesta :

ANSWER

[tex]\frac{ {w}^{2} - 7w + 12}{ {w}^{2} + w - 20 } [/tex]

EXPLANATION


The given fraction is,

[tex] \frac{w - 3}{w + 5} [/tex]

To get an equivalent fraction, we multiply both the numerator and the denominator by the same quantity that will give us

w²+w-20

in the denominator.


This implies that,

[tex] \frac{w - 3}{w + 5} = \frac{(w - 3)(w - 4)}{(w + 5)(w - 4)} [/tex]

We multiply out the numerators and denominators using the distributive property to obtain,


[tex] \frac{w - 3}{w + 5} = \frac{ {w}^{2} - 4w - 3w + 12}{ {w}^{2} - 4w + 5w - 20 } [/tex]

This simplifies to

[tex] \frac{w - 3}{w + 5} = \frac{ {w}^{2} - 7w + 12}{ {w}^{2} + w - 20 } [/tex]