Respuesta :
Answer:
c. -0.432
Step-by-step explanation:
The given formula is
[tex]T_{n}=T_{1}(n)^{b}[/tex]
Where [tex]T_{1}=200[/tex], [tex]T_{n} =15[/tex] and [tex]n=400[/tex]. (givens of the problem).
Replacing and solving for [tex]b[/tex] , we have
[tex]15=200(400)^{b} \\(400)^{b} =\frac{15}{200}= 0.075\\log((400)^{b} )=log(0.075)\\b(log(400))=log(0.075)\\b=\frac{log(0.075)}{log(400)}\\ b \approx -0.432[/tex]
Therefore, the right answer is c.