Respuesta :

Answer:  [tex]\bold{y=-\dfrac{1}{4}(x-3)^2+2}[/tex]

Step-by-step explanation:

The vertex form of a quadratic equation is: y = a(x - h)² + k,     where

  • (h, k) is the vertex
  • "a" is the vertical stretch

Input the vertex (3, 2) and the point (-1, -2) into the equation to solve for "a":

[tex]-2 = a(-1-3)^2+2\\\\-2=a(-4)^2+2\\\\-2=16a+2\\\\-4=16a\\\\\dfrac{-4}{16}=\dfrac{16}{16}a\\\\-\dfrac{1}{4}=a[/tex]

Now, input the vertex and the a-value into the equation:

[tex]y=-\dfrac{1}{4}(x-3)^2+2[/tex]