Answer:
[tex]\log_912=1.131[/tex]
Step-by-step explanation:
Given expression [tex]\log_912[/tex] ,
we have to rewrite the logarithm as a quotient of common logarithms and then evaluate
Using property of logarithm ,
[tex]\log_a(b)=\frac{\log_e(b)}{\log_e(a)}[/tex]
Given expression
[tex]\log_912[/tex] becomes,
[tex]\log_9(12)=\frac{\log_e(12)}{\log_e(9)}[/tex]
[tex]\log_e12 =2.485[/tex](approx))
[tex]\log_e9 =2.197[/tex](approx)
Substitute , we get,
[tex]\frac{\log_e 12}{\log_e 9} = 1.131[/tex]
Thus, [tex]\log_912=1.131[/tex]