Respuesta :

Answer:

Option D is correct.

Range of the function h(x)

[tex](-\infty, 1) \cup [0, \infty)[/tex]

Step-by-step explanation:

The range of the function is the set of all dependent variables for which function is defined

Given the function:

[tex]h(x) = \frac{x^2}{1-x^2}[/tex]

Let y = h(x)

then;

[tex]y= \frac{x^2}{1-x^2}[/tex]

By cross multiply we have;

[tex]y(1-x^2) = x^2[/tex]

Using distributive property: [tex]a\cdot (b+c) = a\cdot b + a\cdot c[/tex]

[tex]y-yx^2 = x^2[/tex]

Add both sides [tex]yx^2[/tex] we get;

[tex]y= x^2+yx^2[/tex]

or

[tex]y= x^2(1+y)[/tex]

Divide both sides (1+y) we get;

[tex]\frac{y}{y+1} = x^2[/tex]

or

[tex]x = \sqrt{\frac{y}{1+y}}[/tex]

or

[tex]h^{-1}(y)= \sqrt{\frac{y}{1+y}}[/tex]

interchange x and y value we have;

[tex]h^{-1}(x)= \sqrt{\frac{x}{1+x}}[/tex]

To find the excluded value of the inverse function of h(x)

Equate denominator of the inverse function to 0.

x +1 = 0

x = -1

so, the domain of the inverse function is the set of all real values except -1

therefore, the function h(x) is the set of all real values except -1 i.e

[tex](-\infty, 1) \cup [0, \infty)[/tex]