Respuesta :

Answer:

The co-factors and their values are shown in the table below.

Step-by-step explanation:

We are given the matrix, [tex]\begin{bmatrix}3&7&1\\7&1&-3\\8&5&1\end{bmatrix}[/tex].

It is required to match the co-factors with the corresponding values.

As, the co-factors are given by,

[tex]A_{c_{ij}}[/tex] = [tex](-1)^{i+j}(d)[/tex], where the d= determinant of the matrix after removing the i- row and j- column.

So, we have,

1. [tex]A_{c_{11}}[/tex].

So, [tex]A_{c_{11}}=(-1)^{1+1}(1\times 1-5\times (-3))[/tex]

i.e. [tex]A_{c_{11}}=(-1)^{2}(1+15)=16[/tex]

2. [tex]A_{c_{13}}[/tex].

So, [tex]A_{c_{13}}=(-1)^{1+3}(7\times 5-1\times 8)[/tex]

i.e. [tex]A_{c_{13}}=(-1)^{4}(35-8)=27[/tex]

3. [tex]A_{c_{21}}[/tex].

So, [tex]A_{c_{21}}=(-1)^{2+1}(7\times 1-5\times 1)[/tex]

i.e. [tex]A_{c_{21}}=(-1)^{3}(7-5)=-2[/tex]

4. [tex]A_{c_{22}}[/tex].

So, [tex]A_{c_{22}}=(-1)^{2+2}(3\times 1-8\times 1)[/tex]

i.e. [tex]A_{c_{22}}=(-1)^{4}(3-8)=-5[/tex]

5. [tex]A_{c_{31}}[/tex].

So, [tex]A_{c_{31}}=(-1)^{3+1}(7\times (-3)-1\times 1)[/tex]

i.e. [tex]A_{c_{31}}=(-1)^{4}(-21-1)=-22[/tex]

Thus, we get,

Co-factor                 Value

[tex]A_{c_{11}}[/tex]                              16

[tex]A_{c_{13}}[/tex]                             27

[tex]A_{c_{21}}[/tex]                             -2

[tex]A_{c_{22}}[/tex]                            -5

[tex]A_{c_{31}}[/tex]                           -22