Respuesta :

Answer:

see explanation

Step-by-step explanation:

Consider the left side

Simplify the numerator/denominator using the trigonometric identities

• tanx = [tex]\frac{sinx}{cosx}[/tex] and secx = [tex]\frac{1}{cosx}[/tex]

sinx + tanx = sinx + [tex]\frac{sinx}{cosx}[/tex] = [tex]\frac{xsinxcosx+sinx}{cosx}[/tex]

= [tex]\frac{sinx(1+cosx)}{cosx}[/tex] ← numerator

and

1 + secx = 1 + [tex]\frac{1}{cosx}[/tex] = [tex]\frac{cosx+1}{cosx}[/tex] ← denominator

Putting this together gives

[tex]\frac{sinx(1+cosx)}{cosx}[/tex] × [tex]\frac{cosx}{1+cosx}[/tex]

Cancel cosx and (1 + cosx) on numerator/ denominator, leaving

left side = sinx = right side ⇒ verified