contestada

An altitude of a right triangle to its hypotenuse divides this hypotenuse into two segments that measure 9cm, and 16cm. What are the lengths of the legs of this triangle?

Respuesta :

Answer:

Step-by-step explanation:

Let a be the length of the altitude, then from the given triangles, applying the basic proportionality theorem,  we get

[tex]\frac{BD}{AD}=\frac{DC}{BD}[/tex]

⇒[tex](BD)^{2}=DC{\times}AD[/tex]

⇒[tex](BD)^2=9{\times}16[/tex]

⇒[tex]BD=\sqrt{144}[/tex]

⇒[tex]BD=12 cm[/tex]

Thus, the length of altitude is: 12 cm.

Now, [tex]\frac{AB}{AD}=\frac{AC}{AB}[/tex]

⇒[tex](AB)^{2}=220[/tex]

[tex]AB= 14.83 cm[/tex]

Also, [tex]\frac{BC}{DC}\frac{AC}{BC}[/tex]

⇒[tex](BC)^{2}=400[/tex]

⇒[tex]BC=20 cm[/tex]

Thus, the lengths of the legs of this triangle are 14.83 and 20 cm.

Ver imagen boffeemadrid

The lengths of the legs of this triangle are 20 cm and 15 cm respectively.

What is an equation?

An equation is an expression that shows the relationship between two or more numbers and variables.

Let h represent the altitude, a represent one leg and b represent the other leg, hence:

a² = h² + 9²

h² = a² - 9²

Also,

b² = h² + 16²

h² = b² - 16²

This means that:

a² - 9² = b² - 16²  

a² = b² - 16² + 9²    (1)

From the triangle:

(9 + 16)² = a² + b²

25² = (b² - 16² + 9²) + b²

b = 20 cm

a² = (20)² - 16² + 9²

a = 15 cm

The lengths of the legs of this triangle are 20 cm and 15 cm respectively.

Find out more on equation at: https://brainly.com/question/2972832