Respuesta :
Answer:
Step-by-step explanation:
Let a be the length of the altitude, then from the given triangles, applying the basic proportionality theorem, we get
[tex]\frac{BD}{AD}=\frac{DC}{BD}[/tex]
⇒[tex](BD)^{2}=DC{\times}AD[/tex]
⇒[tex](BD)^2=9{\times}16[/tex]
⇒[tex]BD=\sqrt{144}[/tex]
⇒[tex]BD=12 cm[/tex]
Thus, the length of altitude is: 12 cm.
Now, [tex]\frac{AB}{AD}=\frac{AC}{AB}[/tex]
⇒[tex](AB)^{2}=220[/tex]
⇒[tex]AB= 14.83 cm[/tex]
Also, [tex]\frac{BC}{DC}\frac{AC}{BC}[/tex]
⇒[tex](BC)^{2}=400[/tex]
⇒[tex]BC=20 cm[/tex]
Thus, the lengths of the legs of this triangle are 14.83 and 20 cm.

The lengths of the legs of this triangle are 20 cm and 15 cm respectively.
What is an equation?
An equation is an expression that shows the relationship between two or more numbers and variables.
Let h represent the altitude, a represent one leg and b represent the other leg, hence:
a² = h² + 9²
h² = a² - 9²
Also,
b² = h² + 16²
h² = b² - 16²
This means that:
a² - 9² = b² - 16²
a² = b² - 16² + 9² (1)
From the triangle:
(9 + 16)² = a² + b²
25² = (b² - 16² + 9²) + b²
b = 20 cm
a² = (20)² - 16² + 9²
a = 15 cm
The lengths of the legs of this triangle are 20 cm and 15 cm respectively.
Find out more on equation at: https://brainly.com/question/2972832