Rewrite y =[tex]\sqrt9{x} +45[/tex] – 2 to make it easy to graph using a translation. Describe the graph.

Rewritten, y =[tex]\sqrt{x}-5[/tex] – 2. It is the graph of y = [tex]\sqrt{x}[/tex] translated 5 units left and 2 units down.

Rewritten, y =[tex]\sqrt{x} +5[/tex] – 2. It is the graph of y = [tex]\sqrt{x}[/tex] translated 5 units right and 2 units down.

Rewritten, y =[tex]\sqrt[3]{x} +5[/tex] – 2. It is the graph of y = [tex]\sqrt[3]{x}[/tex] translated 5 units left and 2 units down.

Rewritten, y = [tex]\sqrt[3]{x} +5[/tex]– 2. It is the graph of y = [tex]\sqrt[3]{x}[/tex]translated 5 units right and 2 units down.

Respuesta :

Answer:

(1) We have been given a function: [tex]y=\sqrt{9x}+45-2[/tex]

We can rewrite it using translation is:  

It is the graph of [tex]y=\sqrt{9x}[/tex] translated 45 units left and 2 units down.

(2) Now, [tex]y=\sqrt{x}-5-2[/tex]

So this is the graph of [tex]y=\sqrt{x}[/tex] translated 5 units right and 2 units down.

(3) [tex]y=\sqrt{x}+5-2[/tex]

So, this is the graph of [tex]y=\sqrt{x}[/tex] translated 5 units left and 2 units down.

(4) [tex]y=\sqrt[3]{x}+5-2[/tex]

It is the graph of [tex]y=\sqrt[3]{x}[/tex]

translated 5 units left and 2 units down.

(5) [tex]y=\sqrt[3]{x}+5-2[/tex]

It is the graph of [tex]y=\sqrt[3]{x}[/tex]

translated 5 units left and 2 units down.