Answer:
Step-by-step explanation:
The formula of a distance between two points:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
X(-3, -6), Y(21, -6). Substitute:
[tex]XY=\sqrt{21-(-3))^2+(-6-(-6))^2}=\sqrt{24^2+0^2}=\sqrt{24^2}=24[/tex]
X(-3, -6), Z(21, 4). Substitute:
[tex]XZ=\sqrt{(21-(-3))^2+(4-(-6))^2}=\sqrt{24^2+10^2}=\sqrt{576+100}=\sqrt{676}=26[/tex]
Y(21, -6), Z(21, 4). Substitute:
[tex]YZ=\sqrt{(21-21)^2+(4-(-6))^2}=\sqrt{0^2+10^2}=\sqrt{10^2}=10[/tex]
The perimeter of the triangle XYZ:
[tex]P_{\triangle XYZ}=XY+XZ+YZ[/tex]
Substitute:
[tex]P_{\triangle XYZ}=24+26+10=60[/tex]