Respuesta :

Answer:

2 [tex]\frac{1}{16}[/tex]

Step-by-step explanation:

The question state that;  the sum of a number, 1/6 of that number, 2 1/2 of that number, and 7 is 12 1/2. Find the number.

First, we need to interpret and represent this statement mathematically

Let n be the number.

The sum means 'addition'

1/6 of that number is  1/6 of n = 1/6 × n  = [tex]\frac{n}{6}[/tex]

2 1/2 of that number is 2 1/2 of n = 2 1/2 × n  = 5/2 × n = [tex]\frac{5n}{2}[/tex]

So the question says that, when we add; [tex]\frac{n}{6}[/tex] ,  [tex]\frac{5n}{2}[/tex]  and 7 all together, the value is 12 1/2

That is;

[tex]\frac{n}{6}[/tex]  + [tex]\frac{5n}{2}[/tex] + 7 = 12 1/2

[tex]\frac{n}{6}[/tex]  + [tex]\frac{5n}{2}[/tex] + 7  = [tex]\frac{25}{2}[/tex]         ( changing 12 1/2 to improper fraction will give  [tex]\frac{25}{2}[/tex] )

So we can now go ahead and solve for n

[tex]\frac{n}{6}[/tex]  + [tex]\frac{5n}{2}[/tex] + 7  = [tex]\frac{25}{2}[/tex]  

subtract 7 from both-side of the equation

[tex]\frac{n}{6}[/tex]  + [tex]\frac{5n}{2}[/tex]   =  [tex]\frac{25}{2}[/tex]   -   7

[tex]\frac{n + 15n}{6}[/tex]  =   [tex]\frac{25 -14}{2}[/tex]

[tex]\frac{16n}{6}[/tex]      =    [tex]\frac{11}{2}[/tex]

[tex]\frac{16n}{6}[/tex]  can be reduced to give us [tex]\frac{8n}{3}[/tex]

[tex]\frac{8n}{3}[/tex]   =   [tex]\frac{11}{2}[/tex]

Cross multiply

8n × 2  = 11× 3

16n = 33

Divide both-side of the equation by 16

[tex]\frac{16n}{16}[/tex]    =   [tex]\frac{33}{16}[/tex]

(On the left-hand side of the equation, 16 will cancel-out 16 leaving us with just, while  on the right-hand side of the equation 33 will be divided by 16)

n =  [tex]\frac{33}{16}[/tex]     = [tex]2\frac{1}{16}[/tex]

Therefore the number is  [tex]2\frac{1}{16}[/tex]

The number is 3/2.

Given

The sum of a number, 1/6 of that number, 2 1/2 of that number, and 7 is 12 1/2.

System of equations;

When solving the system, you must consider all of the equations involved and find a solution that satisfies all of the equations.

Let, the number be n.

Here, 1/6 of the number n is;

[tex]\rm = \dfrac{1}{6}\times n= \dfrac{n}{6}[/tex]

And 2 1/2 of the number n is;

[tex]\rm = 2\dfrac{1}{2}\times n\\\\=\dfrac{2\times 2+1}{2}\times n\\\\=\dfrac{4+1}{2}\times n\\\\=\dfrac{5}{2}\times n\\\\=\dfrac{5n}{2}[/tex]

Therefore,

The sum of a number, 1/6 of that number, 2 1/2 of that number, and 7 is 12 1/2.

[tex]\rm n+\dfrac{n}{6}+\dfrac{5n}{2}+7=12\dfrac{1}{2}\\\\\dfrac{6n+n+15n+42}{6} = \dfrac{12\times 2+1}{2}\\\\\dfrac{22n+42}{6} = \dfrac{24+1}{2}\\\\\dfrac{22n+42}{6} = \dfrac{25}{2}\\\\2(22n+42)=25\times 6\\\\44n+84=150\\\\44n=150-84\\\\44n=66\\\\n = \dfrac{66}{44}\\\\n=\dfrac{3}{2}[/tex]

Hence, the number is 3/2.

To know more about the equation click the link given below.

https://brainly.com/question/12292915