Respuesta :
Answer: [tex]f(x)= (0.863834933)^x[/tex]
Step-by-step explanation:
Let the initial population of country A represented by [tex]P_1[/tex] and the population of country B is represented by [tex]P_2[/tex],
Then, According to the question,
[tex]P_1=P_2[/tex] ----------(1)
Since, the population of country A is increasing at a rate of 5% per year,
Hence, the population of A after x years
[tex]= P_1(1+0.05)^x[/tex]
[tex]= P_1(1.05)^x[/tex]
Similarly, the population of country B is increasing at a rate of 21.551 % per year,
Hence, the population of B after x years
[tex]= P_2(1+0.21551)^x[/tex]
[tex]= P_2(1.21551)^x[/tex]
Thus, the ratio of the population of A and that of B is,
[tex]\frac{\text{ Population of A}}{\text{Population of B}}=\frac{ P_1(1.05)^x}{ P_2(1.21551)^x}[/tex]
By equation (1),
[tex]\frac{\text{ Population of A}}{\text{Population of B}}=\frac{ P_1(1.05)^x}{ P_1(1.21551)^x}[/tex]
[tex]\frac{\text{ Population of A}}{\text{Population of B}}=\frac{ (1.05)^x}{ (1.21551)^x}[/tex]
[tex]\frac{\text{ Population of A}}{\text{Population of B}}=(\frac{1.05}{1.21551})^x[/tex]
[tex]f(x)= (0.863834933)^x[/tex]
Which is the required function.