Respuesta :

Answer:

[tex]x =5\\x =-5\\x=4i\\x=-4i[/tex]

Step-by-step explanation:

We have the equation [tex]-3x^4 +27 x^{2} +1200=0[/tex]

Since it is a polynomial of degree 4, to solve it we must use the ruffini method, as shown below.

We start by testing with x = 5 that it is a multiple of 1200.

   -3      0      27      0      1200

5         -15     -75   -240  -1200

--------------------------------------------------

   -3    -15     -48   -240       0

x = 5 is a root of the polynomial

Now we try with x = -5

      -3    -15     -48   -240

-5            15       0     240

---------------------------------------------

      -3      0      -48      0

x = -5 is a root of the polynomial

Then we have the following polynomial

[tex](x+5)(x-5)(-3x^2 - 48)=0[/tex]

[tex](-3x^2 - 48)[/tex] this polynomial has no real roots

[tex]-3x^2 -48 = 0\\\\x^2 + 16 = 0\\\\x = \±\ 4i[/tex]

Then we have left:

[tex](x+5)(x-5)(x-4i)(x+4i)= 0[/tex]

And the zeros of the polynomial are:

[tex]x =5\\x =-5\\x=4i\\x=-4i[/tex]