Respuesta :
Denote the number by [tex]10a+b[/tex], where [tex]a,b[/tex] are positive integers between 0 and 9 [tex](a\neq0)[/tex].
"the tens digit is two less than the units digit" [tex]\implies a=b-2[/tex]
Reversing digits gives a new number [tex]10b+a[/tex].
"sum of the reversed number and the original number is 154" [tex]\implies10(a+b)+(b+a)=154[/tex]
Simplify the second equation:
[tex]11(a+b)=154\implies a+b=\dfrac{154}{11}=14[/tex]
Since [tex]a=b-2[/tex], by substitution we get
[tex](b-2)+b=2b-2=2(b-1)=14\implies b-1=\dfrac{14}2=7\implies b=8[/tex]
which in turn gives
[tex]a=8-2=6[/tex]
So the original number is [tex]10\cdot6+8=68[/tex].
Hiii babe! Your answer is 68!
Sorry if calling you babe is weird, it's just something I say.
HAVE A GREAT DAY!!!