In triangle QRS QT=5 and TS=22 what is RT? Explain!!

Answer:
[tex]\large\boxed{RT=\sqrt{110}\approx10.49}[/tex]
Step-by-step explanation:
ΔTQR and ΔTRS are similar (AA). Therefore the sides are in proportion:
[tex]\dfrac{RT}{QT}=\dfrac{TS}{RT}[/tex]
We have QT = 5m ans TS = 22m. Substitute:
[tex]\dfrac{RT}{5}=\dfrac{22}{RT}[/tex] cross multiply
[tex]RT^2=(5)(22)[/tex]
[tex]RT^2=110\to RT=\sqrt{110}[/tex]