Respuesta :
ANSWER
[tex]3 \sqrt{7} [/tex]
EXPLANATION
The given radical is
[tex]7 \sqrt{7} - 2 \sqrt{28} [/tex]
Remove the perfect square from the second radical.
[tex] = 7 \sqrt{7} - 2 \sqrt{4 \times 7} [/tex]
[tex] = 7 \sqrt{7} - 2 \sqrt{4} \times \sqrt{7} [/tex]
[tex] = 7 \sqrt{7} - 2 \times 2 \times \sqrt{7} [/tex]
[tex] = 7 \sqrt{7} - 4 \sqrt{7} [/tex]
Subtract the like radicals
[tex] = 3 \sqrt{7} [/tex]
Answer:
7√7-2√28 = 3√7
Step-by-step explanation:
We have given the expression:
7√7-2√28
We have to simplify the expression.
As we know that:
√28 = √4×7
Then we have,
7√7-2√28 = 7√7-2√4×7
7√7-2√28 = 7√7-2√4×√7
7√7-2√28 = 7√7-2×2×√7
7√7-2√28 = 7√7-4√7
7√7-2√28 = 3√7