Respuesta :

ANSWER

[tex]3 \sqrt{7} [/tex]

EXPLANATION

The given radical is

[tex]7 \sqrt{7} - 2 \sqrt{28} [/tex]

Remove the perfect square from the second radical.

[tex] = 7 \sqrt{7} - 2 \sqrt{4 \times 7} [/tex]

[tex] = 7 \sqrt{7} - 2 \sqrt{4} \times \sqrt{7} [/tex]

[tex] = 7 \sqrt{7} - 2 \times 2 \times \sqrt{7} [/tex]

[tex] = 7 \sqrt{7} - 4 \sqrt{7} [/tex]

Subtract the like radicals

[tex] = 3 \sqrt{7} [/tex]

Answer:

7√7-2√28 = 3√7

Step-by-step explanation:

We have given the expression:

7√7-2√28

We have to simplify the expression.

As we know that:

√28 = √4×7

Then we have,

7√7-2√28 = 7√7-2√4×7

7√7-2√28 = 7√7-2√4×√7

7√7-2√28 = 7√7-2×2×√7

7√7-2√28 = 7√7-4√7

7√7-2√28 = 3√7