Respuesta :
[tex]A = \pi {r}^{2} = \pi {( \frac{d}{2}) }^{2} =\pi \frac{ {d}^{2} }{4} \Rightarrow d = \sqrt{ \frac{4A}{\pi} } \\ \Leftrightarrow d = \sqrt{ \frac{4 \times 113.1}{\pi} } = \sqrt{ \frac{452.4}{\pi} } \approx12 \: ft[/tex]
[tex]A = \pi {r}^{2} = \pi {( \frac{d}{2}) }^{2} =\pi \frac{ {d}^{2} }{4} \Rightarrow d = \sqrt{ \frac{4A}{\pi} } \\ \Leftrightarrow d = \sqrt{ \frac{4 \times 113.1}{\pi} } = \sqrt{ \frac{452.4}{\pi} } \approx12 \: ft[/tex]