Respuesta :

znk

Answer:

21. g(x) = f(x-1); 23. g(x) = -ƒ(x)  

Step-by-step explanation:

21. ƒ(x) = log₃x

The graph is shifted one unit to the right.

One unit must have been subtracted from x.

g(x) = -f(x-1) = log₃(x-1)

Figure 1 shows ƒ(x) (blue) and g(x) (green) shifted one unit to the right,

23. [tex]f(x) = \log_{\frac{1 }{ 2}}x[/tex]

The graph is inverted.

ƒ(x) must have been multiplied by -1.

g(x) = -ƒ(x)

[tex]g(x) = -\log_{\frac{1 }{ 2}}x[/tex]

Figure 2 shows ƒ(x) (purple) and g(x) = -ƒ(x) (black).

Ver imagen znk
Ver imagen znk
gmany

Answer:

[tex]\large\boxed{21.\ g(x)=f(x-2)+1\to g(x)=\log_3(x-2)+1}\\\\\boxed{22.\ g(x)=f(x)-4\to g(x)=3^x-4}\\\\\boxed{23.\ g(x)=-f(x)\to g(x)=-\log_{\frac{1}{2}}x}[/tex]

Step-by-step explanation:

f(x) + n - shift the grapf n units up

f(x) - n - shift the grapf n units down

f(x + n) - shift the grapf n units to the left

f(x - n) - shift the grapf n units to the right

-f(x) - reflection about the x-axis

f(-x) - reflection about the y-axis

============================================

Look at the picture.

[tex]21.\\f(x)=\log_3x\\\\g(x)=\log_3(x-2)+1[/tex]

move the graph 2 units to the right and 1 unit up

[tex]22.\\f(x)=3^x\\\\g(x)=3^x-4[/tex]

move the graph 4 units down

[tex]23.\\f(x)=\log_{\frac{1}{2}}x\\\\g(x)=-\log_{\frac{1}{2}}x[/tex]

reflection the graph about the X axis.

Ver imagen gmany
Ver imagen gmany
Ver imagen gmany