Respuesta :

Answer:

[tex]r=8[/tex]

Step-by-step explanation:

we know that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form  [tex]y=kx[/tex]

In this problem

Let

[tex]y=m[/tex]

[tex]x=r^{2}[/tex]

substitute

[tex]m=kr^{2}[/tex]

Find the value of k

For [tex]r=2, m=14[/tex]

[tex]14=k(2^{2})[/tex]

[tex]14=4k[/tex]

[tex]k=14/4[/tex] ----> constant of proportionality

the equation is equal to

[tex]m=(14/4)r^{2}[/tex]

Find the value of r when m=224

substitute in the equation and solve for r

[tex]224=(14/4)r^{2}[/tex]

[tex]r^{2}=224*4/14[/tex]

[tex]r^{2}=64[/tex]

[tex]r=8[/tex]