Respuesta :

Question: What is the solution to the equation [tex]\bold{x\cdot \:2=9x+6}[/tex]

Answer: [tex]\boxed{\bold{x=-\frac{6}{7}}}[/tex]

Explanation: [tex]\downarrow{\downarrow{\downarrow{}}}[/tex]

[ Step One] Subtract 9x From Both Sides Of Equation

[tex]\bold{x\cdot \:2-9x=9x+6-9x}[/tex]

[ Step Two ] Simplify Equation

[tex]\bold{-7x=6}[/tex]

[ Step Three ] Divide Both Sides By -7

[tex]\bold{\frac{-7x}{-7}=\frac{6}{-7}}[/tex]

[ Step Four ] Simplify

[tex]\bold{x=-\frac{6}{7}}[/tex]

[tex]\bold{\rightarrow{}Rhythm \ Bot\leftarrow{}}[/tex]

Answer:  The required solutions of the given quadratic equation are

[tex]x=\dfrac{9+\sqrt{105}}{2},~~~\dfrac{9-\sqrt{105}}{2}.[/tex]

Step-by-step explanation:  We are given to find the solution of the following quadratic equation :

[tex]x^2=9x+6~~~~~~~\Rightarrow x^2-9x-6=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

We know that

the solution of a quadratic equation of the form [tex]ax^2+bx+c=0,~a\neq 0[/tex] is given by

[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}.[/tex]

For the given equation (i), we have

a = 1,  b = -9  and  c = -6.

Therefore, the solution of equation (i) is as follows :

[tex]x\\\\\\=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\\\=\dfrac{-(-9)\pm\sqrt{(-9)^2-4\times1\times(-6)}}{2\times1}\\\\\\=\dfrac{9\pm\sqrt{81+24}}{2}\\\\\\=\dfrac{9\pm\sqrt{105}}{2}.[/tex]

Thus, the required solutions of the given quadratic equation are

[tex]x=\dfrac{9+\sqrt{105}}{2},~~~\dfrac{9-\sqrt{105}}{2}.[/tex]