Respuesta :

Banger after banger and Ik that bc gang there

Question 1:

We have the region given by:

[tex]y> 2x + 1[/tex]

First we want to find an ordered pair that is not a solution, that is, evaluate the inequality in a pair (x, y) and that it is not fulfilled.

Example:

[tex](x, y) = (3,1)[/tex]

We replace:

[tex]1> 2 (3) +1\\1> 6 + 1\\1> 7[/tex]

It is not fulfilled

The pair (3,1) is not a solution of [tex]y> 2x + 1[/tex]

Now, we want to find an ordered pair that is a solution of the region, that is, that the inequality is met.

Example:

[tex](x, y) = (3,8)[/tex]

We replace:

[tex]8> 2 (3) +1\\8> 6 + 1\\8> 7[/tex]

The inequality is met.

The pair (3,8) is solution of [tex]y> 2x + 1[/tex]

Answer:

The pair (3,1) is not a solution of [tex]y> 2x + 1[/tex]

The pair (3,8) is solution of [tex]y> 2x + 1[/tex]

Question 2:

For this case, we must evaluate each of the options in the acad region:

Coordinate 1: (x, y) = (5,3)

Set 1:

[tex]y> - \frac {1} {2} x + 5\\3> - \frac {1} {2} (5) +5\\3> - \frac {5} {2} +5\\3> \frac {5} {2}[/tex]

Is fulfilled.

Set 2:

[tex]y \leq3x-2\\3 \leq3 (5) -2\\3 \leq15-2\\3 \leq13[/tex]

Is fulfilled.

Coordinate 2: (x, y) = (4,3)

Set 1:

[tex]y> - \frac {1} {2} x + 5\\3> - \frac {1} {2} (4) +5\\3> - \frac {4} {2} +5\\3> \frac {6} {2}\\3> 3[/tex]

It is not fulfilled

Set 2:

[tex]y\leq 3x-2\\3\leq3 (4) -2\\3\leq 12-2\\3\leq 10[/tex]

If it is fulfilled.

Coordinate 3: (x, y) = (3,4)

Set 1:

[tex]y> - \frac {1} {2} x + 5\\4> - \frac {1} {2} (3) +5\\4> - \frac {3} {2} +5\\3> \frac {7} {2}\\3> 3.5[/tex]

It is not true

Set 2:

[tex]y\leq 3x-2\\4\leq 3 (3) -2\\4\leq 9-2\\4\leq 7[/tex]

Is fulfilled.

Coordinate 4: (x, y) = (4,4)

Set 1:

[tex]y> - \frac {1} {2} x + 5\\4> - \frac {1} {2} (4) +5\\4> - \frac {4} {2} +5\\4> \frac {6} {2}\\4> 3[/tex]

It is not true

Region 2:

[tex]y\leq 3x-2\\4\leq 3 (4) -2\\4\leq 12-2\\4\leq 10[/tex]

Is fulfilled

Answer:

There is not a pair that is not a solution of both at the same time