A N S W E R Q U I C K P L E A S E

1. The directrix of a parabola is y=−8 . The focus of the parabola is (−2,−6) .

What is the equation of the parabola?

y=14(x+2)2−7

y=−18(x+2)2+7

y=18(x−2)2−7

y=−14(x−2)2−7

2. The directrix of a parabola is the line y=5 . The focus of the parabola is (2,1) .

What is the equation of the parabola?



y=−18(x−2)2−3

y=18(x−2)2+3

y=18(x−2)2−3

y=−18(x−2)2+3

3. The focus of a parabola is (0,−2) . The directrix of the parabola is the line y=−3 .

What is the equation of the parabola?


y=14x2−2

y=−12x2−52

y=−14x2+2

y=12x2−52

Respuesta :

Answer:

1. A

2. D

3. D

Step-by-step explanation:

The standard form of a parabola is

[tex]y=\frac{1}{4p}(x-h)^2+k[/tex]            ..... (1)

Where, (h,k) is vertex, (h,k+p) is focus and y=k-p is directrix.

1. The directrix of a parabola is y=−8 . The focus of the parabola is (−2,−6) .

[tex]k-p=-8[/tex]                   ...(a)

[tex](h,k+p)=(-2,-6)[/tex]

[tex]k+p=-6[/tex]            .... (b)

[tex]h=-2[/tex]

On solving (a) and (b),  we get k=-7 and p=1.

Put h=-2, k=-7 and p=1 in equation (1).

[tex]y=\frac{1}{4(1)}(x-(-2))^2+(-7)[/tex]

[tex]y=\frac{1}{4}(x+2)^2-7[/tex]

Therefore option A is correct.

2 The directrix of a parabola is the line y=5 . The focus of the parabola is (2,1) .

[tex]k-p=5[/tex]                   ...(c)

[tex](h,k+p)=(2,1)[/tex]

[tex]k+p=1[/tex]            .... (d)

[tex]h=2[/tex]

On solving (c) and (d),  we get k=3 and p=-2.

Put h=2, k=3 and p=-2 in equation (1).

[tex]y=\frac{1}{4(-2)}(x-(2))^2+(3)[/tex]

[tex]y=-\frac{1}{8}(x-2)^2+3[/tex]

Therefore option D is correct.

3. The focus of a parabola is (0,−2) . The directrix of the parabola is the line y=−3 .

[tex]k-p=-3[/tex]                   ...(e)

[tex](h,k+p)=(0,-2)[/tex]

[tex]k+p=-2[/tex]            .... (f)

[tex]h=0[/tex]

On solving (e) and (f),  we get k=-2.5 and p=0.5.

Put h=0, k=-2.5 and p=0.5 in equation (1).

[tex]y=\frac{1}{4(0.5)}(x-(0))^2+(-2.5)[/tex]

[tex]y=\frac{1}{2}(x)^2-2.5[/tex]

[tex]y=\frac{1}{2}(x)^2-\frac{5}{2}[/tex]

Therefore option D is correct.