Which choices are equivalent to the expression below? Check all that apply. 6√3


A. √18 * √6

B. √108

C. √3 * √6

D. √54

E. √3 * √36

F. 108

Respuesta :

Answer:

case A. [tex]\sqrt{18}*\sqrt{6}[/tex]

case B. [tex]\sqrt{108}[/tex]

case E. [tex]\sqrt{3}*\sqrt{36}[/tex]

Step-by-step explanation:

we have

[tex]6\sqrt{3}[/tex]

we know that

[tex]6\sqrt{3}=\sqrt{36*3}=\sqrt{108}[/tex]

Verify each case

case A) [tex]\sqrt{18}*\sqrt{6}[/tex]

[tex]\sqrt{18}*\sqrt{6}=\sqrt{18*6}=\sqrt{108}[/tex]

therefore

[tex]\sqrt{18}*\sqrt{6}[/tex] is equivalent to [tex]6\sqrt{3}[/tex]

case B) [tex]\sqrt{108}[/tex]

so

[tex]\sqrt{108}[/tex] is equivalent to [tex]6\sqrt{3}[/tex]

case C) [tex]\sqrt{3}*\sqrt{6}[/tex]

[tex]\sqrt{3}*\sqrt{6}=\sqrt{18}[/tex]

therefore

[tex]\sqrt{18}[/tex] is not equivalent to [tex]6\sqrt{3}[/tex]

case D) [tex]\sqrt{54}[/tex]

so

[tex]\sqrt{54}[/tex] is not equivalent to [tex]6\sqrt{3}[/tex]

case E) [tex]\sqrt{3}*\sqrt{36}[/tex]

[tex]\sqrt{3}*\sqrt{36}=\sqrt{108}[/tex]

therefore

[tex]\sqrt{3}*\sqrt{36}[/tex] is equivalent to [tex]6\sqrt{3}[/tex]

case F) [tex]108[/tex]

so

[tex]108[/tex] is not equivalent to [tex]6\sqrt{3}[/tex]