contestada

Use the completing the square method to find the roots of 2x^2+3x-15=13 include the steps, it would be greatly appreciated thanks!!

Respuesta :

Answer:

The roots are

[tex]x1= \frac{-3+\sqrt{233}}{4}[/tex]

[tex]x2= \frac{-3-\sqrt{233}}{4}[/tex]

Step-by-step explanation:

we have

[tex]2x^{2}+3x-15=13[/tex]

so

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]2x^{2}+3x=13+15[/tex]

[tex]2x^{2}+3x=28[/tex]

Factor the leading coefficient  

[tex]2(x^{2}+(3/2)x)=28[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]2(x^{2}+(3/2)x+(9/16))=28+(9/8)[/tex]

[tex]2(x^{2}+(3/2)x+(9/16))=233/8[/tex]

[tex](x^{2}+(3/2)x+(9/16))=233/16[/tex]

Rewrite as perfect squares

[tex](x+(3/4))^{2}=233/16[/tex]

square root both sides

[tex](x+\frac{3}{4})=(+/-)\sqrt{\frac{233}{16}}\\ \\(x+\frac{3}{4})=(+/-)\frac{\sqrt{233}}{4}\\ \\x= -\frac{3}{4}(+/-)\frac{\sqrt{233}}{4}[/tex]

[tex]x1= -\frac{3}{4}(+)\frac{\sqrt{233}}{4}=\frac{-3+\sqrt{233}}{4}[/tex]

[tex]x2= -\frac{3}{4}(-)\frac{\sqrt{233}}{4}=\frac{-3-\sqrt{233}}{4}[/tex]