Respuesta :

Answer:

[tex]3a+2b[/tex]

Step-by-step explanation:

[tex]\frac{3}{ab^2}+\frac{2}{a^2b}[/tex]

[tex]\frac{3}{ab^2}=\frac{3a}{ab^2a}=\frac{3a}{a^2b^2}[/tex]

[tex]\frac{2}{a^2b}=\frac{2b}{a^2bb}=\frac{2b}{a^2b^2}[/tex]

[tex]\frac{3a}{a^2b^2}+\frac{2b}{a^2b^2}[/tex]

[tex]\frac{3a+2b}{a^2b^2}[/tex]

[tex]3a+2b[/tex]

Answer:

Option c

Step-by-step explanation:

The given expression is [tex]\frac{3}{ab^2}+\frac{2}{a^2b}[/tex]

To solve these fraction we will take the LCM of the denominators.

ab² = a × b × b

a²b = a × a × b

LCM = a × b × b × a

       = a² b²

Now [tex]\frac{3}{ab^{2}}+\frac{2}{a^2b}=(\frac{3a+2b}{a^2b^2} )[/tex]

So the correct numerator will be (3a + 2b)

Option c is the answer.