Perform the operation shown below and then choose the correct numerator. 3/ab^2 + 2/a^2b

Answer:
[tex]3a+2b[/tex]
Step-by-step explanation:
[tex]\frac{3}{ab^2}+\frac{2}{a^2b}[/tex]
[tex]\frac{3}{ab^2}=\frac{3a}{ab^2a}=\frac{3a}{a^2b^2}[/tex]
[tex]\frac{2}{a^2b}=\frac{2b}{a^2bb}=\frac{2b}{a^2b^2}[/tex]
[tex]\frac{3a}{a^2b^2}+\frac{2b}{a^2b^2}[/tex]
[tex]\frac{3a+2b}{a^2b^2}[/tex]
[tex]3a+2b[/tex]
Answer:
Option c
Step-by-step explanation:
The given expression is [tex]\frac{3}{ab^2}+\frac{2}{a^2b}[/tex]
To solve these fraction we will take the LCM of the denominators.
ab² = a × b × b
a²b = a × a × b
LCM = a × b × b × a
= a² b²
Now [tex]\frac{3}{ab^{2}}+\frac{2}{a^2b}=(\frac{3a+2b}{a^2b^2} )[/tex]
So the correct numerator will be (3a + 2b)
Option c is the answer.