Instructions: Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match each linear equation with its slope and a point on the line.

Tiles:

slope= 3, point= (2,17)

slope= 1/3, point= (19,2)

slope= 3, point= (5,2)

slope= 1/3, point= (17,-2)

slope= 1/3, point= (-5,2)


Pairs:

y=3x-13

y=3x+11

3y=x+11

3y=x-13

Respuesta :

Answer:

y = 3x - 13................slope= 3, point= (5,2)

y = 3x + 11.................slope= 3, point= (2,17)

3y = x + 11................slope= 1/3, point= (-5,2)

3y = x - 13................slope= 1/3, point= (19,2)

Step-by-step explanation:

To match each equation to its slope and point, remember that an equation in y = mx + b has slope m. The point must also satisfy or make true the equation when substituted for (x,y).

y=3x-13  has slope 3. The point (2,17) make it false. But (5,2) makes it true.

17 = 3(2) - 13                 2 = 3(5) - 13

17 = 6-13                       2 = 15 - 13

17 = - 7  False              2 = 2 True

y=3x+11  has slope 3. This means (2,17) must be true.

3y=x+11  can be converted to y = 1/3x + 11/3. It has slope 1/3. Test each point.

2= 1/3(19) + 11/3                 -2 = 1/3(17) + 11/3        2 = 1/3(-5) + 11/3

2 = 19/3 + 11/3                    -2 = 17/3 + 11/3          2 = -5/3 + 11/3

False                                    False                        2 = 6/3    True

3y=x-13 can be converted to y = 1/3x - 13/3. It has slope 1/3. Test each remaining point.

2= 1/3(19) - 13/3                 -2 = 1/3(17) - 13/3        

2 = 19/3 - 13/3                    -2 = 17/3 - 13/3          

2 = 6/3                                -2 = 4/3

True                                   False                        

Answer:

y=3x-13 : slope = 3, point = (5, 2)

y=3x+11 : slope = 1/3, point = (-5, 2)

3y=x+11 : slope = 3, point = (2,17)

3y=x-13 : slope = 1/3, point = (19, 2)

Step-by-step explanation:

Since, the equation of a line passes through [tex](x_1, y_1)[/tex] with slope m is,

[tex]y-y_1=m(x-x_1)[/tex]

If m = 3, [tex]x_1=2[/tex], [tex]y_1=17[/tex]

Equation of the line,

[tex]y-17=3(x-2)[/tex]

[tex]y-17=3x-6[/tex]

[tex]y = 3x - 6 + 17\implies y = 3x + 11[/tex]

If m = 1/3, [tex]x_1=19[/tex], [tex]y_1=2[/tex]

Equation of the line,

[tex]y-2=\frac{1}{3}(x-19)[/tex]

[tex]3y-6=x-19[/tex]

[tex]3y = x-19+6\implies 3y = x -13[/tex]

If m = 3, [tex]x_1=5[/tex], [tex]y_1=2[/tex]

Equation of the line,

[tex]y-2=3(x-5)[/tex]

[tex]y-2=3x-15[/tex]

[tex]y = 3x - 15 + 2\implies y = 3x -13[/tex]

If m = 1/3, [tex]x_1=17[/tex], [tex]y_1=-2[/tex]

Equation of the line,

[tex]y+2=\frac{1}{3}(x-17)[/tex]

[tex]3y+6=x-17[/tex]

[tex]3y=x-17-6\implies 3y = x-23[/tex]

If m = 1/3, [tex]x_1=-5[/tex], [tex]y_1=2[/tex]

Equation of the line,

[tex]y-2=\frac{1}{3}(x+5)[/tex]

[tex]3y-6=x+5[/tex]

[tex]3y=x+5+6\implies 3y = x+11[/tex]