Respuesta :

Answer:

The function intersect the x-axis two times

Step-by-step explanation:

we have

[tex]y=-2x^{2}+3x+5[/tex]

To find the x-intercepts equate the equation to zero

so

[tex]0=-2x^{2}+3x+5[/tex]

[tex]-2x^{2}+3x+5=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]-2x^{2}+3x+5=0[/tex]  

so

[tex]a=-2\\b=3\\c=5[/tex]

substitute in the formula

[tex]x=\frac{-3(+/-)\sqrt{3^{2}-4(-2)(5)}} {2(-2)}[/tex]

[tex]x=\frac{-3(+/-)\sqrt{49}} {-4}[/tex]

[tex]x=\frac{-3(+/-)7} {-4}[/tex]

[tex]x1=\frac{-3(+)7} {-4}=-1[/tex]

[tex]x2=\frac{-3(-)7} {-4}=2.5[/tex]

so

The function has two x-intercepts

therefore

The function intersect the x-axis two times

Answer:

twice

Step-by-step explanation: