Respuesta :

Answer:

[tex](x- \frac{2}{5})^{2} = x^2 -\frac{4}{5}x + \frac{4}{25}[/tex]

Step-by-step explanation:

You have two methods to expand this binomial.

Method 1  

If you have the expression:

[tex](x- \frac{2}{5})^{2}[/tex]

You can write the expression it in the following way:

[tex](x-\frac{2}{5})^{2}=(x-\frac{2}{5})(x-\frac{2}{5})[/tex]

Then, apply the distributive property:

[tex](x-\frac{2}{5})(x-\frac{2}{5}) = x^2 -\frac{2}{5}x -\frac{2}{5}x+ (\frac{2}{5})\frac{2}{5}[/tex]

Simplify the expression:

[tex](x-\frac{2}{5})^2= x^2 -\frac{4}{5}x+ (\frac{4}{25})[/tex]

---------------------------------------------------------------------------------------

Method 2

For any expression of the form:

[tex](a-b)^2[/tex]

Its expanded form will be:

[tex](a-b)^2= a^2 -2ab + b^2[/tex]

If

[tex]a = x[/tex]

[tex]b =\frac{2}{5}[/tex]

[tex](x- \frac{2}{5})^{2} = x^2 - 2x\frac{2}{5} + (\frac{2}{5})^2[/tex]

[tex](x- \frac{2}{5})^{2} = x^2 -\frac{4}{5}x + \frac{4}{25}[/tex]