Transform the given quadratic function into vertex form f(x) = quadratic function into vertex form f(x) = quadratic function into vertex form [tex]f(x) = (x-h)^{2} + k[/tex] by completing the square. [tex]a(x-h)^{2} +k[/tex] by completing the square.

[tex]f(x) = x^{2} +7x-1[/tex]

Respuesta :

Answer:

Vertex form: [tex]f(x) =(x +\frac{7}{2})^2 -\frac{53}{4}[/tex]

The vertex is [tex](-\frac{7}{2},-\frac{53}{4})[/tex]

Step-by-step explanation:

For a general quadratic function the form is:

[tex]ax ^ 2 + bx + c[/tex]

For the function

[tex]f(x) = x ^ 2+ 7x -1[/tex]

The values of the coefficients for the function are the following: [tex]a = 1[/tex], [tex]b =7[/tex], [tex]c = -1[/tex]

Take the value of b and divide it by 2. Then, the result obtained squares it.

[tex]\frac{b}{2}= \frac{7}{2}[/tex]

[tex](\frac{b}{2})^2=(\frac{7}{2})^2=\frac{49}{4}[/tex]

Add and subtract [tex]\frac{49}{4}[/tex]

[tex]f(x) = (x ^ 2 +7x +\frac{49}{4}) -\frac{49}{4}- 1[/tex]

Write the expression of the form

[tex]f(x) = (x+\frac{b}{2})^2 +k[/tex]

[tex]f(x) =(x +\frac{7}{2})^2 -\frac{53}{4}[/tex]

The vertex is [tex](-\frac{7}{2},-\frac{53}{4})[/tex]