A flat circular plate has the shape of the region x squared plus y squared less than or equals 1x2+y2≤1. the​ plate, including the boundary where x squared plus y squared equals 1x2+y2=1​, is heated so that the temperature at the point left parenthesis x comma y right parenthesis(x,y) is upper t left parenthesis x comma y right parenthesist(x,y)equals=x squared plus 3 y squared plus one third xx2+3y2+13x. find the temperatures at the hottest and coldest points on the plate.

Respuesta :

You're looking for the extreme values of [tex]x^2+3y^2+13x[/tex] subject to the constraint [tex]x^2+y^2\le1[/tex].

The target function has partial derivatives (set equal to 0)

[tex]\dfrac{\partial(x^2+3y^2+13x)}{\partial x}=2x+13=0\implies x=-\dfrac{13}2[/tex]

[tex]\dfrac{\partial(x^2+3y^2+13x)}{\partial y}=6y=0\implies y=0[/tex]

so there is only one critical point at [tex]\left(-\dfrac{13}2,0\right)[/tex]. But this point does not fall in the region [tex]x^2+y^2\le1[/tex]. There are no extreme values in the region of interest, so we check the boundary.

Parameterize the boundary of [tex]x^2+y^2\le1[/tex] by

[tex]x=\cos u[/tex]

[tex]y=\sin u[/tex]

with [tex]0\le u<2\pi[/tex]. Then [tex]t(x,y)[/tex] can be considered a function of [tex]u[/tex] alone:

[tex]t(x,y)=t(\cos u,\sin u)=T(u)[/tex]

[tex]T(u)=\cos^2u+3\sin^2u+13\cos u[/tex]

[tex]T(u)=3+13\cos u-2\cos^2u[/tex]

[tex]T(u)[/tex] has critical points where [tex]T'(u)=0[/tex]:

[tex]T'(u)=-13\sin u+4\sin u\cos u=\sin u(4\cos u-13)=0[/tex]

[tex](1)\quad\sin u=0\implies u=0,u=\pi[/tex]

[tex](2)\quad4\cos u-13=0\implies\cos u=\dfrac{13}4[/tex]

but [tex]|\cos u|\le1[/tex] for all [tex]u[/tex], so this case yields nothing important.

At these critical points, we have temperatures of

[tex]T(0)=14[/tex]

[tex]T(\pi)=-12[/tex]

so the plate is hottest at (1, 0) with a temperature of 14 (degrees?) and coldest at (-1, 0) with a temp of -12.