Respuesta :

Answer:

1. [tex]\tan \theta[/tex] is not defined at [tex]\theta = \frac{\pi}{2}[/tex]

2.  none of the option holds true

3. Option A

Step-by-step explanation:

1.

[tex]\tan \theta = \frac{\sin \theta}{\cos\theta}[/tex]

[tex]\tan \frac{\pi}{2} = \frac{\sin \frac{\pi}{2}}{\cos \frac{\pi}{2}}[/tex]

[tex]\sin \frac{\pi}{2} = 1[/tex]

[tex]\cos \frac{\pi}{2} =0[/tex]

[tex]\tan \frac{\pi}{2} = \frac{1}{0}[/tex]

Hence

[tex]\tan \frac{\pi}{2}[/tex] is not defined

2.

[tex]\frac{x}{12} = \sin 20[/tex]

[tex]\frac{x}{12} = \cos 70[/tex]

[tex]\frac{12}{x} = \cosec 20[/tex]

[tex]\frac{12}{x} = \sec 70[/tex]

None of the above is given in the options

3.

The rule says

[tex]\tan (-\theta)= - \tan \theta[/tex]

[tex]\tan(-\frac{\pi}{3})= - \tan \frac{\pi}{3}[/tex]

[tex]\tan(-\frac{\pi}{3})= - \sqrt 3[/tex]

Hence option A is correct