Respuesta :

Answer:

[tex]d. \ \boxed{270}[/tex]

Step-by-step explanation:

In this exercise we need to make a division and evaluate the new function at [tex]x=5[/tex]. so we have two functions, namely:

[tex]f(x)=7+4x \ and \\ \\ g(x)=\frac{1}{2x}[/tex]  

Therefore:

[tex]f(5)=7+4(5)=27 \\ \\ g(5)=\frac{1}{2\times 5}=\frac{1}{10}[/tex]

So:

[tex](f/g)(5)=\frac{27}{\frac{1}{10}}=270[/tex]

Answer:

The correct option is d.

Step-by-step explanation:

The given functions are

[tex]f(x)=7+4x[/tex]

[tex]g(x)=\frac{1}{2x}[/tex]

Substitute x=5 in each function.

[tex]f(5)=7+4(5)=7+20=27[/tex]

[tex]g(5)=\frac{1}{2(5)}=\frac{1}{10}[/tex]

We need to find the value of (f/g)(5).

[tex](\frac{f}{g})(5)=\frac{f(5)}{g(5)}[/tex]

Substitute f(5)=27 and [tex]g(5)=\frac{1}{10}[/tex] in the above equation.

[tex](\frac{f}{g})(5)=\frac{27}{\frac{1}{10}}[/tex]

[tex](\frac{f}{g})(5)=27\times 10=270[/tex]

The value of  (f/g)(5) is 270. Therefore the correct option is d.