Respuesta :
Answer:
[tex]d. \ \boxed{270}[/tex]
Step-by-step explanation:
In this exercise we need to make a division and evaluate the new function at [tex]x=5[/tex]. so we have two functions, namely:
[tex]f(x)=7+4x \ and \\ \\ g(x)=\frac{1}{2x}[/tex]
Therefore:
[tex]f(5)=7+4(5)=27 \\ \\ g(5)=\frac{1}{2\times 5}=\frac{1}{10}[/tex]
So:
[tex](f/g)(5)=\frac{27}{\frac{1}{10}}=270[/tex]
Answer:
The correct option is d.
Step-by-step explanation:
The given functions are
[tex]f(x)=7+4x[/tex]
[tex]g(x)=\frac{1}{2x}[/tex]
Substitute x=5 in each function.
[tex]f(5)=7+4(5)=7+20=27[/tex]
[tex]g(5)=\frac{1}{2(5)}=\frac{1}{10}[/tex]
We need to find the value of (f/g)(5).
[tex](\frac{f}{g})(5)=\frac{f(5)}{g(5)}[/tex]
Substitute f(5)=27 and [tex]g(5)=\frac{1}{10}[/tex] in the above equation.
[tex](\frac{f}{g})(5)=\frac{27}{\frac{1}{10}}[/tex]
[tex](\frac{f}{g})(5)=27\times 10=270[/tex]
The value of (f/g)(5) is 270. Therefore the correct option is d.