Respuesta :

Answer:

b. [tex]x=\frac{5\pi}{6}[/tex]

Step-by-step explanation:

The given function is

[tex]\sec x=-\frac{2\sqrt{3} }{3},\:\:for\:\:\frac{\pi}{2}\le x \le \pi[/tex]

Recall that the reciprocal of the cosine ratio is the secant ratio.

This implies that;

[tex]\frac{1}{\cos x}=-\frac{2\sqrt{3} }{3}[/tex]

[tex]\Rightarrow \cos x=-\frac{3}{2\sqrt{3} }[/tex]

[tex]\Rightarrow \cos x=-\frac{\sqrt{3}}{2}[/tex]

We take the inverse cosine of both sides to obtain;

[tex]x=\cos^{-1}(-\frac{\sqrt{3}}{2})[/tex]

[tex]x=\frac{5\pi}{6}[/tex]

Answer:

Answer B.

Step-by-step explanation:

5pi/6