Respuesta :

ANSWER

[tex]{f}^{ - 1} (x) = ln(x + 4) - 3[/tex]

EXPLANATION

We want to find the equation of the inverse of

[tex]y = {e}^{x + 3} - 4[/tex]

First, we need to interchange x and y.

[tex]x= {e}^{y + 3} - 4[/tex]

Solve for y,

[tex]x + 4={e}^{y + 3} [/tex]

Take the natural logarithm of both sides,

[tex] ln(x + 4)= ln{e}^{y + 3} [/tex]

Simplify

[tex] ln(x + 4)= y + 3[/tex]

[tex]ln(x + 4) - 3= y [/tex]

Hence the inverse function is,

[tex] {f}^{ - 1} (x) = ln(x + 4) - 3[/tex]