Respuesta :

Answer:

[tex]k=\frac{22}{3}[/tex]

Step-by-step explanation:

The oblique asymptote of

[tex]f(x)=\frac{9x^2+37x+41}{3x+5}[/tex],

We perform the long division as shown in the attachment.

The quotient is;

[tex]3x+\frac{22}{3}[/tex]

Comparing to 3x+k

Hence the value of k is [tex]\frac{22}{3}[/tex]

Ver imagen kudzordzifrancis

Answer:

[tex]\frac{22}{3}[/tex]

Step-by-step explanation:

To find out oblique asymptote we divide the polynomials using long division

To find quotient divide the first term. then multiply the answer with 3x+5 and write it down. Subtract it from the top. Repeat the process till we get remainder.

                                     [tex]3x+\frac{22}{3}[/tex]    

                            ------------------------------

[tex]3x+5[/tex]                 [tex]9x^2+37x+41[/tex]

                                 [tex]9x^2+15x[/tex]    

                           -------------------------------------(Subtract)

                                            [tex]22x+41[/tex]  

                                             [tex]22x+\frac{110}{3}[/tex]

                                          ------------------------------------(subtract)

                                                                [tex]\frac{13}{3}[/tex]  

Quotient is [tex]3x+\frac{22}{3}[/tex] that is our oblique asympotote

the value of k is 22/3