contestada

Find Sin (A+B) When SinA=(3/5) with 90 degrees < A < 270 degrees, and if CosB=(8/17) with 0 degrees < B< 180 degrees

Respuesta :

Recall the compound angle identity:

[tex]\sin(a+b)=\sin a\cos b+\cos a\sin b[/tex]

[tex]90^\circ<a<270^\circ[/tex], so we expect [tex]\cos a<0[/tex], and [tex]0^\circ<b<180^\circ[/tex], so we expect [tex]\sin b>0[/tex]. Then by the Pythagorean identity,

[tex]\cos^2x+\sin^2x=1\implies\begin{cases}\cos a=-\sqrt{1-\sin^2a}=-\dfrac45\\\\\sin b=\sqrt{1-\cos^2b}=\dfrac{15}{17}\end{cases}[/tex]

Then

[tex]\sin(a+b)=-\dfrac{36}{85}[/tex]