Respuesta :
Answer:
D
Step-by-step explanation:
Using the trigonometric identities
• cscx = [tex]\frac{1}{sinx}[/tex]
• sin²x + cos²x = 1
Given
cosΘ = - [tex]\frac{1}{4}[/tex] , 180 < Θ < 270
then Θ is in the third quadrant where sinΘ < 0
sinx = - [tex]\sqrt{1-cos^2x}[/tex]
sinΘ = - [tex]\sqrt{1-(-1/4)^2}[/tex] = - [tex]\sqrt{\frac{15}{16} }[/tex] = -[tex]\frac{\sqrt{15} }{4}[/tex]
Hence
cscΘ = [tex]\frac{1}{-\frac{\sqrt{15} }{4} }[/tex] = - [tex]\frac{4}{\sqrt{15} }[/tex]